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Feature Extraction of Separation
and Attachment Lines

David N. Kenwright, Member, IEEE, Chris Henze, and Creon Levit

Abstract—Separation and attachment lines are topologically significant curves that exist on 2D surfaces in 3D vector fields. Two
algorithms are presented, one point-based and one element-based, that extract separation and attachment lines using eigenvalue
analysis of a locally linear function. Unlike prior techniques based on piecewise numerical integration, these algorithms use robust
analytical tests that can be applied independently to any point in a vector field. The feature extraction is fully automatic and suited to
the analysis of large-scale numerical simulations. The strengths and weaknesses of the two algorithms are evaluated using analytic
vector fields and also results from computational fluid dynamics (CFD) simulations. We show that both algorithms detect open
separation lines—a type of separation that is not captured by conventional vector field topology algorithms.

Index Terms—Vector field visualization, vector field topology, flow visualizaiton, feature detection, flow separation, separation line.

INTRODUCTION

1
IDENTTFYING regions of separated airflow is very impor-
tant in the design of aircraft because flow separation can
reduce lift and cause control problems when flying at slow
speeds. Flow separation and attachment is said to occur
when the flow abruptly leaves or returns to a solid body, as
depicted in Fig. 1. It frequently occurs on the wings of air-
craft when they are inclined relative to the onset airflow.
This phenomenon has been studied for more than 50 years
[5], [15], [22], [27] although there is still no consensus on a
mathematical definition for separation in a 3D vector field,
(discussed in Section 2).

A separated airflow causes a significant increase in drag
and raises the stall speed of an aircraft—conditions that are
particularly dangerous at takeoff and landing. In some air-
craft, such as the delta wing shown in Fig. 1, flow separa-
tion and attachment must occur in order for the wings to
produce lift. Fighter aircraft can also exploit separation to
enable them to rapidly decelerate during a dogfight. The
ability to predict when and where flow separation occurs in
numerical simulations is clearly beneficial to aircraft de-
signers because it helps them to predict flight characteris-
tics before building or flying the prototype aircraft.

Separation and attachment lines and surfaces, though
sometimes known by other names, are important not only
in fluid dynamics but also in other fields of science. For
example, Bader [1] and his colleagues have explained many
features of molecular physics and quantum chemistry using
the techniques of vector field topology. In their theory of
“atoms in molecules,” interatomic surfaces, i.e., boundaries
between atoms in real space, are defined to be separation
surfaces in the gradient of the electronic charge density.
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Two automatic feature extraction techniques will be de-
scribed that locate and distinguish separation and attach-
ment lines on solid bodies in 3D numerical flow fields. The
algorithms are based on eigenvalue analysis of the velocity
gradient tensor and perform a local analysis of the vector
field rather than a global analysis of the entire flow field.
They are useful for analyzing large partitioned data sets,
such as those computed on distributed memory architec-
tures, because the elements can be processed in parallel.
Fully automated feature extraction techniques are increas-
ingly necessary to analyze and extract information from the
results of large-scale numerical simulations. Automated
techniques have several advantages over traditional inter-
active visualization techniques. First, they eliminate the
need for scientists or engineers to manually explore their
data to find the features of interest. Second, the analysis can
be done off-line on computers without graphics capability,
such as the supercomputers that generate the data. Third,
the feature extraction algorithms output 3D graphics
primitives whose combined size is typically several orders
of magnitude smaller than the original data set. This is a
significant data reduction and enables the results to be
interactively viewed on modest graphics workstations.
Fourth, they provide quantitative information, e.g., the lo-
cation of a separation line, which can be used to assess the
effect of design modifications.

The contents of this paper are organized as follows. The
various definitions for a separation line are discussed in
Section 2. Prior techniques used to detect and visualize flow
separation and attachment lines are discussed in Section 3.
The mathematical foundations for the element- and point-
based algorithms are presented in Sections 4 and 5. The
algorithms are tested using analytic functions and CFD
data in Section 6, and the results compared to those pro-
duced by particle tracing, line integral convolution, and
flow topology algorithms on the same data sets. Section 7
gives an analysis, while Section 8 concludes this paper.
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Fig. 1. Flow separation and attachment occurs along the edge of this
delta wing aircraft where the airflow abruptly leaves and then returns to
the surface. The curves along which this occurs are called separation
and attachment lines.

2 DEFINITION OF A SEPARATION LINE

Separation is almost always studied in viscous flows, where
the velocity field goes smoothly to zero on all solid surfaces
(“no-slip boundary conditions”). In these cases, if one is
interested in surface flow, one usually deals with limiting
streamlines, which are streamlines in the wall shear stress
vector field. The wall shear stress is defined as the normal
derivative to the surface of the velocity vector field. Integral
curves in this vector field are sometimes referred to as sur-
face streamlines, wall shear-stress trajectories, or skin fric-
tion lines. It is this vector field which produces oil-flow
patterns in wind tunnel experiments [16].

We can find no precise definition, mathematical or oth-
erwise, of separation in 3D flows in the fluid dynamics or
aeronautics literature. The common theme running through
most descriptions of separation concerns flow turning away
from a surface where it had been moving tangentially. In 2D
flows, this can occur only at critical points (half-saddles)
located on 1D boundaries. These critical points are just
places where flows along the surface in opposing directions
converge and, by continuity, the wall shear stress is zero. In
fully 3D flows over a 2D boundary, there are 1D loci where
flows in relatively opposing directions meet, but the crite-
rion of zero wall shear stress does not generally hold, be-
cause there is almost always flow aleng the 1D curve. In
fact, the wall shear stress can reach zero only at isolated
points along these so-called “lines of separation.”

Since streamlines cannot meet, except at critical points,
flow converging from relatively opposing directions must
turn and approach a separation line tangentially. This be-
havior has led some to characterizing separation lines as
streamline asymptotes [24), [25], or envelopes of streamlines [26].
A more straightforward description is provided by Panton
[18], who states simply: “Separation lines are lines on the
surface where surface streamlines tend to accumulate.”

3 PRIOR WORK

Techniques used to identify separation and attachment lines
in numerical flow simulations fall into one of two categories:

phenomenological or topological. With phenomenological
techniques, scientists must observe flow patterns on a sur-
face and use their insight or experience to identify the sepa-
ration and attachment lines. These techniques usually
mimic flow visualization techniques used in wind and wa-
ter tunnel experiments. The topological techniques are
based on the mathematics of Poincare and identify specific
features that originate from critical points.

3.1 Skin Friction Lines

Surface streamlines or skin friction lines are widely used
phenomenological techniques [17]. The approach is to seed
particles near a body and to compute integral curves
(streamlines) that are constrained to the body. This approach
can be effective if large numbers of particles are released be-
cause the curves merge together along separation lines, as
shown in Fig. 2. Attachment lines are not usually so obvious
because the particle paths diverge.

Because this approach relies on observation, the analyst
must study the flow patterns to determine which lines cor-
respond to separation and which to attachment. Both are
visually similar, although it can usually be determined by
examining the direction of the asymptotes in relation to the
direction of the onset flow. The asymptotes generally curve
downstream along separation lines and upstream along
attachment lines. However, it becomes difficult to make the
same distinction when the separation lines are perpen-
dicular to the onset flow. Of greater concern is the amount
of redundant information (i.e., irrelevant curves) that is
generated by this technique.

3.2 Texture Synthesis

Texture synthesis techniques such as Line Integral Convo-
lution (LIC) [3] and Spot Noise [23] create continuously
shaded images that can effectively show the global struc-
ture of a flow. They have been applied to skin friction vec-
tor fields in CFD data sets [9], [10], [21] to create flow pat-
terns that are strikingly similar to experimental visualiza-
tions. Fig. 3 shows the skin friction lines on the delta wing
rendered using a LIC algorithm. Once again, this is a phe-
nomenological technique that requires careful analysis to

_ identify and distinguish separation and attachment lines in

the flow patterns. This is relatively easy in steady-state

Fig. 2. The skin friction lines on the surface of the delta wing asymp-
totically approach separation lines and asymptotically leave attach-
ment lines.
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Fig. 3. A global surface flow visualization created using an LIC algorithm.
The close-up (inset) reveals several parallel separation and attachment
lines in close proximity, although the analyst must carefully study the
direction of the asymptotes in order to distinguish one from the other.

simulations, but is difficult in time-accurate simulations
because the surface flow patterns can change significantly
over time.

3.3 Vector Field Topology

Separation lines can be located using methods based on
vector field topology [8], [12]. The topology of a vector field
consists of critical points, i.e., points where the velocity is
zero, and the tangent curves (instantaneous streamlines)
which connect these points. Because the velocity at a critical
point is zero, the velocity field in the neighborhood of the
critical point is determined by Vu. Critical points are classi-
fied, to a first order approximation, by the eigenvalues and
eigenvectors of Vu. Common classifications include a sad-
dle, node, spiral, and center, as shown in Fig. 6.

In [12], the separation lines were generated by integrat-
ing outward from the “saddle” critical points in the real
eigenvector directions. These tangent curves, or more pre-
cisely, the separatrices, were classified as separation or at-
tachment lines based on the sign of the eigenvalues. That is,
a positive or a negative real part of an eigenvalue indicated
whether the tangent curve had a repelling or attracting na-
ture, respectively. This approach assumes that the separa-
tion is closed, that is, the separation occurs along a line,
which begins at a saddle and ends at another critical point.
Several closed separation lines are illustrated in Fig. 4. In
Section 6, we will demonstrate another type of separation
called open separation, which does not obey this condition.

4 PHASE PLANE ALGORITHM

An important goal of the present study was to develop a
technique to identify and extract separation lines that was
consistent with one or more of the current “definitions”
discussed in Section 2. We also wanted the technique to be
local, meaning that an independent test could be applied to
each element on the surface of a body. The phase plane al-
gorithm [14] was the first of two techniques presented. The
idea was to model the flow over a simple triangular ele-
ment and identify the flow patterns that contained stream-
line asymptotes. Given that the velocity vectors are defined
at the vertices, as shown in Fig. 5, a linear vector field can

Fig. 4. The vector field topology on the surface of the delta wing. There
are a pair of saddle and spiral critical points on each side of the wing
(see inset). The integral curves that originate from these points are
called closed separation (green) and attachment (red) lines.

be constructed that passes through the triangle and satisfies
the prescribed vectors at the vertices:

(G)=(2) (e 26 w

Here, (x, y) is the Cartesian coordinate vector and (%, ) the
tangential velocity or shear stress vector. For a linear vector
field, the coefficients (4,, 4,) and those in the 2 x 2 (Jacobian)
matrix are constants. These constants can be computed
analytically by substituting the coordinates and vectors
from each vertex into (1) and then solving the resulting set
of simultaneous equations.

By differentiating (1) with respect to time and then alge-
braically manipulating the resulting equations, one can
produce a pair of second order nonhomogeneous ordinary
differential equations. The solutions to these types of equa-
tions can be found in most texts on differential equations
(e.g., [2], [28]). If the determinant of the Jacobian matrix is
nonzero, the solution has the form:
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where A and p are the eigenvalues of the Jacobian matrix
and (&}, &,) and (7, 77,) are the eigenvectors. The two col-
umn eigenvectors form the eigenmatrix. The terms « and g
are arbitrary constants that define a particular curve in the
phase plane. The constants x,, and y,, are the coordinates of
the critical point:
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In (2), x,, and y,, translate the coordinate system such
that the origin coincides with the critical point. Note that
the linear vector field constructed in most triangles will
have one critical point. However, that critical point will
usually lie outside the boundary of the triangle. The critical
points that do lie inside triangles correspond to those found
by linear vector field topology methods [11], [12].
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Fig. 5. A linear vector field is constructed through one of the triangles
(red) on the surface of the delta wing using the shear stress vectors
defined at the vertices (blue). The tangent curves (yellow) asymptoti-
cally approach the separation line that passes through the triangle.

Using (2), tangent curves can be constructed that pass
through the triangle, as illustrated in Fig. 5. In this figure,
the tangent curves have been extended beyond the bounda-
ries of the triangle to highlight the asymptote. If we moved
along the asymptote toward the front of the delta wing, we
would eventually pass through the critical point.

Rather than working in the physical plane of the trian-
gle, we can simplify matters by transforming into canonical
coordinates, that is, a coordinate system where the eigen-
vector directions are orthogonal:

(¢ () o
Y) & m) (y®-v,) (B”

We have now derived all the equations that are needed
to implement the phase plane algorithm. However, we
must still establish the conditions under which a streamline
asymptote will pass through the triangle and how to calcu-
late the points of intersection. Using (4), the tangent curves
of the vector field can be constructed in the (X, Y) plane.
This is often referred to as the Poincare phase plane [19].
There are five unique portraits for a linear vector field, all of
which are shown in Fig. 6.

By eliminating the integration variable, ¢, from (4), one
can express the trajectories of these curves in terms of an
implicit scalar function. For the case where both eigenval-
ues are real numbers, the solution is either:

X#
¥(X, Y) =75
or
Y/i
(X, Y)= ~%F 5)

The contours of ¥(X, Y) are everywhere tangent to the
vector field and may be verified using the relation-
ship V¥ - U = 0, where U is the image of the vector field in
the phase plane. By differentiating (4) with respect to ¢, the
reader can obtain the necessary transformation, which
maps the vector field, u, expressed by (1), into the phase
plane. Note that the determinant of the eigenmatrix must
equal one so that the vector field is not scaled by the ca-
nonical transformation.

¥(X, Y) behaves much like Lagrange’s stream function
for irrotational, divergence free, 2D vector fields inasmuch
as the tangent lines are contours of a scalar function. How-
ever, ‘I‘(X, Y) is an exact solution to a rotational 2D linear

vector field, which, in general, will not be divergence-free.
A nonzero divergence means that mass is not conserved on
the surface of the triangle. The fact that this system can lose
mass is physically important because this accounts for fluid
that leaves the surface as the flow converges on a separa-
tion line. The system will gain mass as the flow returns to
the surface and diverges from an attachment line.

One definition of a separation line, discussed in Section 2,
is a streamline asymptote onto which adjacent streamlines
converge. The phase portrait for the saddle in Fig. 7 con-
tains two such lines. These lines originate at the critical
point and are tangential to the eigenvector directions, i.e.,
the X = 0 and Y = 0 axes in the phase plane. These lines are
called separatrices in phase plane terminology. By substi-
tuting either X = 0 or Y = 0 into (5), we find that the stream
function is either zero or singular depending on which
solution is used. In either case, these lines do correspond to
streamlines and fulfill one of the accepted definitions.

The phase portrait for the improper node can assume
one of two orientations in the phase plane depending on
whether it is an attracting node (u < A < 0) or a repelling
node (0 < p < A). Specifically, streamlines asymptotically
diverge from the Y-axis for a repelling node, while they
converge on the X-axis for an attracting node. Both cases
are illustrated Fig. 7. Note that the order of the eigenvalues
indicated in Fig. 7 is important because it ensures that the
Y-axis is an attachment line, and the X-axis a separation
line, in all three portraits.

A separation or attachment line will pass through a tri-
angle if the triangle straddles the X-axis or Y-axis in the
phase plane. The vertices of the triangle are mapped into
the phase plane using the central expression in (4). The
edges of the triangle remain straight because this is a linear
transformation. The intersection points are found using
linear interpolation along an edge, and then mapped back
into the original coordinate system. Implementation details
are discussed further in [14].

5 PARALLEL VECTOR ALGORITHM

A technique for locating separation and attachment lines
was independently developed from observations made
using a 2D vector field topology program called eplane.
The eplane program, developed at NASA Ames Research
Center in 1989 by Levit [13], allows users to interactively
create analytic vector fields (u) with linear, quadratic,
and/or cubic polynomial terms. The coefficients of the
polynomial can be interactively adjusted using one of 20
sliders. One of the tools in eplane (a data probe) allows the
user to visualize the eigenvector directions (e; and e,) of Vu
at any point in the field. When the probe was positioned at
points where streamlines asymptotically converged, we
observed that one of the eigenvectors was always parallel
to the local streamlines. That is:
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Phase portraits for linear vector fields

Saddle

Improper Node Proper Node

Spiral Center

Fig. 6. The five phase portraits for a linear vector field. Only the saddle and improper node contain tangent curves that approach an asymptote.

Portraits containing separation or attachment lines

Saddle: <0<z

Repelling Node: O<ui<i

Attracting Node: (1<)

Fig. 7. In the phase plane, a separation or attachment line passes through those triangles that straddle the X= 0 or Y =0 axes.

e;Xxu=0 6)

This condition also holds true in the phase plane algo-
rithm described in the previous section. That is, the X-axes
and Y-axes in Fig. 7 are eigenvector directions, and happen
to be the only lines where the eigenvectors are parallel to
the velocity vectors. Note that both e; and e, will be real
numbers if a separation or attachment line is present.

The advantage of (6) is that it provides a local test that
can be applied at any point in the field. For discrete data,
such as those produced by CFD simulations, the velocity
vectors and eigenvectors can be evaluated at the vertices
and interpolated within the elements. In our implementa-
tion for structured grids, the velocity vectors were already
defined at the vertices and we calculated Vu at the vertices
using central differences. The eigenvectors of Vu were
evaluated at the same points.

In the phase plane method, the velocity was piecewise
continuous between elements, but the eigenvectors were
discontinuous. With the parallel vector method, we can
ensure that both the vector and eigenvector directions are

continuous between elements by choosing an appropriate
interpolation function. A linear interpolation function for u
and e; is suitable for triangular elements, while a bilinear
function is needed for quadrilateral elements. Because CFD
grids usually have a high density of cells near the surface of
a body, we found it sufficient to compute the points at
which u and e; were parallel on element boundaries.

With the parallel vector method, e; x u=0 is calcu-
lated twice at each vertex, once for the largest eigenvector
(e;) and once for the smallest eigenvector (e,). Note that
this test is only applied if the eigenvalues are both real,
i.e., the classification of Vu at the vertex is a saddle or a
node. If e, x u changes sign across an edge, then a sepa-
ration line or attachment line will intersect the edge. The
intersection point is calculated by linearly interpolating
the cross product across an edge. It is easy to distinguish
the separation and attachment lines since the separation
lines occur where e, x u =0 and attachment lines occur
where e, x u = 0. A continuous line can be constructed by
connecting the respective points in each element.
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After testing the algorithm, we found that (6) was neces-
sary but not sufficient for extracting separation lines. In
particular, it detects an extra set of lines that are the locus of
inflection points in the vector field. These are called inflec-
tion lines hereafter. The flow pattern that gives rise to in-
flection lines is shown in Fig. 8. Along inflection lines, one
of the eigenvectors is locally parallel to the velocity vector,
but the inflection line itself is not an asymptote of neigh-
boring streamlines. This was first reported by Wu et al. [26].
Inflection lines are interesting from a topological viewpoint,
but they are not usually significant to aerodynamicists.
Consequently, we filter these lines out using directional
derivative test.

For a separation line, defined by (6), to be a streamline,
the quantity e; X u must remain zero along the streamline.
This condition, that e; X u =0 is a constant of the motion,
is true locally iff:

e, xu=0 and V(e;xu)-u=0 @
Equation (7) is the directional derivative test. Along inflec-
tion lines, e; x u =0, but V(e; x u)-u# 0. We use a nu-
merical version of the integral form of these expressions to
reject inflection lines.

6 RESULTS

The phase plane and parallel field algorithms were applied
to analytic 2D vector fields generated by the eplane topol-
ogy program [13] as well as to results from CFD simula-
tions [4]. In this study, we examined a large number of
analytic vector fields with successively higher-order poly-
nomial terms. The four analytic vector fields presented here
were chosen because they highlight some of the strengths
and weaknesses of the two approaches.

6.1 Linear Vector Fields

Fig. 9a and 9b show two linear vector fields, a saddle and a
node, that were generated from (8) and (9):

Saddle:
Node:

u=x, v=x+y (8)

v=2y &)

Because both the phase plane and parallel field algorithms
are based on linear interpolation functions, they produce
exact and identical results for linear vector fields. Two such
fields are shown in Fig. 9. The point at which the separation
(green) and attachment lines (red) intersect is a critical point
(zero velocity). The separation and attachment lines are
always straight lines in linear vector fields (with two real
eigenvalues) and are always parallel to the eigenvector
directions. Note that the tangent curves (black) asymptoti-
cally approach both axes of the saddle, whereas there is a
predominant axis of attraction (or repulsion) for the node.
Although the direction of flow is not indicated on the
tangent curves, it can easily be deduced from the color
coding. That is, the flow moves toward a separation line,
while it moves away from an attachment line. This seems
counterintuitive until you consider what happens in three
dimensions. Separation occurs where two opposing flow
directions meet and are forced to lift off a solid body. The

flow must, therefore, approach a separation line in order for
this to occur.

u=x+y,

(a) (b)

Fig. 8. The vector field on the left contains a separation line whereas
the field on the right contains an inflection line.

i

/AN

i

(a) (b)

Fig. 9. The separation (green) and attachment lines (red) were accu-
rately located by both phase plane and paraliel field algorithms in these
simple analytic test cases: (a) saddle and (b) node.

6.2 Open Separation

The second analytic test case is a vector field with quadratic
terms:

u= %(xz + 2xy+y2),

v =-;—(—1+x2 +2xy+y2) (10)
This vector field, illustrated in Fig. 10, is interesting because it
has no critical points anywhere, but it still contains separation
and attachment lines. These are open separation and attach-
ment lines according to Chapman [5] because they neither
start or end at a critical point. Topology-based methods, such
as those described in [6), [7], [11], [12], will not detect this type
of separation line. This example of open separation is not an
isolated case. We were able to create several analytic vector
fields using eplane that contained open separation lines. These
lines may be straight or curved.

_

(b)

Fig. 10. An analytic vector field that contains two open separation and
attachment lines. These were extracted using: (a) the phase plane and
(b) the parallel field algorithms.
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This vector field holds particular interest because paral-
lel separation and attachment lines with this flow pattern
frequently occur on delta wing aircraft. The separation and
attachment lines in Fig. 10a were produced by the phase
plane algorithm and those in Fig. 10b by the parallel field.
Both algorithms successfully identified the limiting lines in
this vector field. The disconnected points that lie inbetween
the separation and attachment lines are inflection points on
the streamlines. These points were rejected by the direc-
tional derivative test. Note that the locus of points, i.e., the
inflection line, is not an asymptotic streamline and is not,
therefore, a separation line. Even in CFD data sets, an in-
flection line will usually exist between a separation and
attachment line, so it is necessary that it be removed with
the directional derivative test.

6.3 Three-Way Symmetry

The third analytic vector field, illustrated in Fig. 11, con-
tains a number of critical points including a higher-order
critical point called a monkey saddle. This vector field was
created using the equations:

u=x+x"-y*, v=y-2xy (11)

Note that the flow diverges much faster from the attachment
lines (red) than it converges on the separation lines (green).
This indicates that the flow is moving much faster along the
separation lines. In a real flow, where fluid can leave the two-
dimensional plane, slowly converging streamlines indicate
that separation (or attachment) is relatively weak. The dis-
parity between the strength of the separation and attachment
highlights a difference between the phase plane and parallel
field algorithms. Compare the results in Fig. 11a and 11b. The
phase plane algorithm produces many false positives, ie.,
additional line segments, along the weak separation lines.

Fig. 11. An analytic vector field that contains a higher-order critical point
known as a monkey saddle. The separation and attachment lines were
extracted using the a) phase-plane, (b) parallel field, and (c) vector field
topology algorithms.

This is because the eigenvectors are constant over each ele-
ment [14]. The parallel vector method does not suffer this
problem because both the velocity and the eigenvectors are
piecewise linear.

The circle of dots in Fig. 11b is the inflection points,
where the streamline curvature is zero. As noted before,
these can be eliminated with the directional derivative test.
They are shown here only for illustration. Fig. 11c shows
the vector field topology computed by eplane. The tangent
curves were integrated in the direction of the real eigen-
vectors from each of the three saddle points. The topology
algorithm in eplane only detects linear critical points, which
accounts for the missing separation lines that originate
from the monkey saddle in Fig. 11c. A higher-order critical
point algorithm [20] is needed to locate these lines.

6.4 Curved Separation Lines

The linear methods described in this paper do not always
detect separation or attachment lines that are curved. Com-
pare the vector fields for the monkey saddle in Fig. 11b and
11c. The topology algorithm finds three curved separation
lines that are not detected by the phase plane or parallel
vector algorithms. These originate at the saddle points on
the circular inflection line.

The underlying problem became apparent when we
studied the curved saddle shown in Fig. 12. The generat-
ing equation was similar to (8) with the addition of a
quadratic term.

Both the phase plane and parallel vector algorithms de-
tect points where the curvature is locally zero. In Fig. 12,
the separation and attachment lines both diverge from the
asymptotic streamline because it has nonzero curvature.
The lines turn into points when the directional derivative
test fails. The (predicted) attachment line diverges slower
because the attaching flow is stronger and the locus of zero
curvature points lies closer to the asymptotic streamline.
This appears to be a serious limitation of the linear algo-
rithms. However, results presented in the next section will
show that, even in complicated vector fields resulting from
CFD simulations, the assumption that the flow is locally
linear is usually satisfactory.

6.5 Delta Wing

The delta wing platform is used in many fighter aircraft
because it has many desirable aerodynamic and structural
qualities. Aeronautical engineers are particularly interested

(b)
Fig. 12. The phase plane and parallel vector algorithms are based on

locally linear interpolants of the vector field. Curved separation lines
pose a problem.
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Fig. 13. Vector arrows rendered on a cutting plane reveal the vortices
above the delta wing. The flow detaches from the surface along a
separation line (green) and returns along an attachment line (red).

in the behavior of the flow both on and above the wing
while flying at low speeds and high angles of attack [4]. The
skin friction lines, shown previously in Fig. 2, reveal many
asymptotically converging streamline patterns along the
leading edges of the wing. Chaderjian and Schiff [4] used
skin friction lines to analyze the surface flow on a delta
wing and reported the following: “The technique clearly
reveals the separation lines where particles accumulate.
Reattachment lines are not as readily apparent, since on
attachment lines the particles move away from each other.
However, computed primary, secondary and tertiary sepa-
ration lines are readily seen.”

The separation lines that Chaderjian and Schiff discuss
are linked to the vortical flow above the wing. Rendering
vector arrows on a transverse plane can reveal this flow,
as illustrated in Fig. 13. The primary and secondary vor-
tices are clearly visible in this figure, but the tertiary vor-
tex, which lies in between them, is less obvious because it
hugs the surface. Each vortex draws fluid off the surface
along separation lines and returns fluid to the surface
along attachment lines. Consequently, the latter are often
called reattachment lines. Given that each vortex is both
drawing fluid and returning it to the surface, we expect to
see an equal number of separation and attachment lines.

Fig. 14. Separation and attachment lines extracted by the phase plane
algorithm. All the important lines are identified, although the low-order
interpolant produces some visually distracting artifacts near the center
of the wing where the attaching flow is weak.

The vector field topology of the delta wing was com-
puted using a topology module in FAST [11}. Surprisingly,
only two pairs of critical points were found on the surface
of the wing. Those on the right wing are shown in the inset
in Fig. 4. The critical points on the left wing are mirror im-
ages of those on the right wing. A more comprehensive
critical point analysis of the entire 3D flow field revealed
that there were no off-surface critical points at all in this
data set. Each pair of critical points consists of one repelling
spiral point and one saddle point. Note that only one of the
integral curves that originates from each saddie point fol-
lows an attachment line. None of the other primary, secon-
dary, or tertiary separation or attachment lines either start
or end at one of the two critical points. These are open
separation and attachment lines according to Chapman [5]
and Wang et al. [24], [25]. Flow topology methods cannot
detect this type of open separation line because they are not
bounded by any critical points, either on or off the body.

The phase plane algorithm extracted all of the primary,
secondary, and tertiary separation (green) and attachment
lines (red) from this data set. The results are shown in Fig. 14.
There are three separation lines and three attachment lines
on each side of the wing, that is, one pair for each vortex.
Furthermore, their location precisely coincides with the
asymptotes of the streamlines.

Note the disjointed line segments near the center of the
wing where the attaching flow is relatively weak and dif-
fused over several elements. This behavior is a consequence
of the linear interpolation function on which the phase
plane algorithm is based. The location and direction of an
attachment (or separation) line is dictated by the gradients
of the interpolation function. For the phase plane algorithm,
these gradients are constant over each triangle but dis-
continuous between triangles. This discontinuity becomes
apparent when the separating or attaching flow is weak. In
the delta wing data set, the weak attachment lines were less
important from an engineering standpoint and the phase
plane algorithm produced acceptable results.

The separation and attachment lines extracted by the
parallel field algorithm are shown in Fig. 15. All inflection
lines have been removed for clarity. The line connectivity
produced by the parallel field algorithm is superior to the

Fig. 15. The parallel vector algorithm also extracts the primary, secon-
dary, and tertiary separation and attachment lines. The line connectivity
is better because both the velocity and eigenvector fields are piecewise
continuous in this algorithm.
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phase plane algorithm because the velocity vectors and
eigenvectors are continuously interpolated across element
boundaries. This guarantees that a separation or attachment
line will have a common intersection point on the shared
edge between neighboring elements.

Most of the separation and attachment lines in Figs. 14
and 15 are the open type, which do not start or end at critical
points [5], [24], [25]. All of the separation and attachment
lines in this flow have very little curvature, so the problem
identified in Section 6.4 had no significant effect in this data
set. However, this may not always be true. Higher-order ver-
sions of the algorithms described here are required to accu-
rately extract curved separation and attachment lines.

7 ANALYSIS

Two important benefits of feature extraction algorithms are
time and data reduction. These were quantified for each of
the feature detection algorithms discussed in this paper.
The surface of the delta wing aircraft was comprised of
9,823 quadriateral elements in a structured curvilinear
mesh. Each quadrilateral was subdivided into two triangles
for the phase plane algorithm. On an SGI Onyx 2 with one
195 MHz R10000 CPU, the feature extraction took 0.73 sec
for the phase plane algorithm and 0.90 sec for the parallel
vector algorithm.

The delta wing data set originally consisted of an 8.2 MB
mesh file and a 13.7 MB solution file. The amount of geome-
try (3D line segments) produced by the feature extraction
algorithms was 66 KB for the phase plane algorithm and 45
KB for the parallel vector algorithm. The output geometry
was, therefore, several hundred times smaller than the
input data. In general, the data reduction offered by these
techniques will improve on larger data sets because the
number of surface elements increase as a square of the
grid dimensions, whereas the number of volume elements
increase as a cube of the grid dimensions.

The results presented in Section 6 indicated that the par-
allel vector algorithm was slightly superior to the phase
plane algorithm. However, implementation issues must also
be considered. The phase plane algorithm is well-suited to
unstructured meshes because the analysis is self-contained
within each triangle. The parallel vector algorithm is harder
to implement because the vector gradients are difficult to
calculate on irregular triangulations. For curvilinear meshes,
the parallel vector algorithm is the best choice because the
vector gradients can be readily calculated using central dif-
ferences. It also solves the line discontinuity problem that
was inherent in the phase plane algorithm.

8 CONCLUSION

Two algorithms have been presented that identify and extract
separation and attachment lines on 2D surfaces in 3D vector
fields. Both algorithms use eigenvector analysis of the veloc-
ity gradient tensor to identify these lines. The first technique
(the “phase plane” algorithm) is element-based and detects
streamline asymptotes using local linear approximations on
triangles. The second approach (the “parallel vector” algo-
rithm) is point-based and detects places where the velocity

vectors are parallel the eigenvectors, i.e., points where the
streamline curvature is zero. This condition also identifies
inflection lines, although these can be remocved using a
directional derivative test. Both approaches correctly iden-
tify separation and attachment lines in many analytic test
cases, although they may fail in vector fields with curved
separation lines. The parallel vector algorithm generally
produces slightly better visualizations than the phase plane
algorithm because it ensures global continuity of the veloc-
ity and eigenvector fields. Of particular significance, both
approaches detect open separation lines, that is, separation
lines that do not start or end at critical points. Traditional
topology algorithms do not capture open separation lines
because they trace separation lines by integrating along the
insets and outsets of saddle points.
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